电气化铁路(电气化铁路分布)

频道:电子元器件 日期: 浏览:336

电气化铁路

本文内容来自于互联网,分享电气化铁路(电气化铁路分布)

电气化铁路,亦称电化铁路,是由电力机车或动车组这两种铁路列车(即通称的火车)为主,所行走的铁路。电气化铁路的牵引动力是电力机车,机车本身不带能源,所需能源由电力牵引供电系统提供。牵引供电系统主要是指牵引变电所和接触网两大部分。变电所设在铁道附近,它将从发电厂经高压输电线送来的电流,送到铁路上空的接触网上。接触网是向电力机车直接输送电能的设备。

目录 [隐藏]

1 简介

2 历史

3 优点

4 组成

5 动力

6 模拟

7 导线

8 供电

9 中国

10 发展

11 意义

12 参考资料

电气化铁路-简介

和传统的蒸汽机车或柴油机车牵引列车运行的铁路不同,电气化铁路是指从外部电源和牵引供电系统获得电能,通过电力机车牵引列车运行的铁路。电力牵引具有马力大,速度快、能耗低、效率高等特点,使用电力牵引的区段,运输能力明显提高,运输成本大为降低,同时,机车性能、工作条件等较内燃机车更好。

它包括电力机车、机务设施、牵引供电系统、各种电力装置以及相应的铁路通信、信号等设备。电气化铁路具有运输能力大、行驶速度快、消耗能源少、运营成本低、工作条件好等优点,对运量大的干线铁路和具有陡坡、长大隧道的山区干线铁路实现电气化,在技术上、经济上均有明显的优越性。

电气化铁路-历史


电气化铁路1879年5月,世界上第一条电气化铁路在德国柏林建成。此后,随着科学技术的发展、铁路运量的增长和对能源利用率的重视,全世界电气化铁路营业里程逐年增加,到20世纪80年代初已超过16.5万公里,占铁路营业总里程的13%,而承担的运量却占铁路总运量的35%。一些以电气化铁路为主的国家,如法国、联邦德国和日本等,一般以占铁路营业总里程的1/3左右的电气化铁路完成铁路总运量的3/4左右。

中国于1961年 8月建成第一条电气化铁路干线──宝成线的宝鸡至凤州段。到1984年底,已累计建成电气化铁路干线3519公里(其中台湾省占 495公里)。还有6000余公里铁路干线,正在进行电气化设计和施工。

电气化铁路-优点

电气化铁路是一种现代化的铁路运输工具,和目前使用的内燃、蒸汽机车牵引的铁路相比,具有技术经济上的优越性。

能大幅度提高运输能力

由于电力机车以外部电能作动力,它不需要自带动力装置,可降低机车自重,这样,在每根轴的荷重相同的条件下,其轴功率较大,目前国内的电力机车最大为900千瓦,内燃机车为500千瓦,在相同的牵引重量时,其速度较高。而在相同速度下,其牵引力较大。客运用的SS8型电力机车持续速度为100公里/时,而DFll型内燃机车只有65.5公里/时。从货运机车的功率来比较,SS4型电力机车为6400千瓦,DFl0型内燃机车为3245千瓦,而前进型蒸汽机车仅为2200千瓦。由上述数字可以看出,因为电力机车的功率大,所以它的牵引力大和持续速度较高,从而大大提高了运输能力。


电气化铁路节约能源,降低运输成本

铁路运输是国家能源消耗的一个大户。因此,牵引动力类型的选择对于合理使用能源具有重要意义。

电力牵引的动力是电能,从我国能源生产的发展来看,“八五”期间发电量增长32%,原煤增长13%,原油增长5.1%;1995年电力牵引用电量仅占全国发电量的0.64%;再以宏观的能源结构看,原油储量远少于煤炭、水力,而一些无法直接使用电能的水上、陆地和空中运输工具及移动机械却需要大量的液体燃料,因此,电力牵引是最合理的牵引动力。电力牵引每万吨公里的能耗比其它牵引约低1/3,根据1990年全路运输业务决算报告,以每万吨公里机务成本计算,电力机车为100%,则内燃机车为136.9%,蒸汽机车为135.1%。

有利于保护环境,并能增加安全可靠程度

电力机车无废气、烟尘,对空气无污染,另外噪音较小,特别在通过长大隧道时,其优点更为显著,这不仅改善了司机的工作条件和旅客的舒适度,而且对铁路沿线城市、郊区的污染也减到最小程度。电力机车装有大功率的电气制动装置,可用于长大下坡的速度调整,从而可以大大提高列车运行的安全度。

电气化铁路-组成

现电气化镇路除电力牵引供电系统和电力机车动车外,还应包括对供电设施集中监控的远动系统。牵引供电设施分布在铁路沿线,运行管理复杂,早在20世纪50年代末和60年代初,国际上即开始研制并采用远动装置。随着电子技术的飞速发展,特别是计算机技术的引入,远动装置已逐步形成能日臻完善的系统(电力牵引供电系统的子系统)。远动系统的功能可归纳为“四遥”,即遥控、遥信、遥测和遥调。采用微机远动系统,可及时掌握供电设施的运行状态、节省人力和实现无人操作,防止误传指令和误操作,提高牵引供电的可靠性,保证运输安全。

电气化铁路成机务设施,除通常意义下的电力机车机务段外,还应有集机车、车辆于一体的电动车组运用和检修基地。

列车运行控制系统的发展是采用车上与地面信号相结合,以车上信号为主的控制方式。这就要求机务和动车组运用检修基地适应这种机电一体化的情况,配备相应的检修设备和技术力量,并加强与电务部门的合作。

电气化铁路-动力

电气化铁路电气化铁路使用电力机车作为牵引动力,机车上不安装原动机,所需电能由电气化铁路电力牵引供电系统提供。沿着铁路线的两旁,架设着一排支柱,上面悬挂着金属线,即为接触网,它也可以被看作是电气化铁路的动脉。电力机车利用车顶的受电弓从接触网获得电能,牵引列车运行。牵引供电制式按接触网的电流制有直流制和交流制两种。直流制是将高压、三相电力在牵引变电所降压和整流后,向接触网供直流电,这是发展最早的一种电流制,到20世纪50年代以后已较少使用。交流制是将高压、三相电力在变电所降压和变成单相后,向接触网供交流电。交流制供电电压较高,发展很快。中国电气化铁路的牵引供电制式从一开始就采用单相工频(50赫)25千伏交流制,这一选择有利于今后电气化铁路的发展。

电气化铁路-模拟

电气化铁路动态物理模拟(physics simulation of transient system of electric railway)反映供电系统和电力牵引全过程及相互关系的动态物理模拟系统,用以获取和优化电气化铁路运行的各主要技术参数。区分为直流和交流电气化铁路动态物理模拟两种类型。

直流电气化铁路动态模拟计算台 直流电气化铁路动态模拟计算台由前苏联莫斯科铁道学院于1950年开始研制。

模拟计算台各环节简介

利用相似标准,按与实际相符的一定比例模拟变电所电压、内阻,接触网和钢轨的电阻、的电阻、电流,机车的F1,I1,研制了包括5个变电所,125km长的接触网、钢轨和线路及电力机车组成的模拟台,其原理结构图见图2。①供电系统:牵引变电所由交流供电经桥式整流及内阻后向4条馈线供电;接触网和钢轨用10个步进选择器组成,其中每层有25条支路,共计250条,每条代表0.5km,其第一层每条支路的电阻模拟10mm2~738mm2的等值铜导线截面,第二层模拟P45和P60型钢轨。②线路纵断面:利用一系列的串、并联电阻形成—电位器,其上不同的正、负电压相似地模拟不同的上、下坡道阻力,使每个0.5km具有不同的坡道。③电力机车牵引列车:机车的主回路由图2中机车电阻和电流来模拟,取电压UkM,形成电流为(M代表模拟值)。

电气化铁路-导线

电气化铁路轨道供电

采用轨道供电的电气化铁路通常铺设有额外的供电轨道,用来连接电网和机车,为机车提供电力供应,亦被称为第三轨供电,这条轨道被称为第三轨。

高架电缆供电

高架电缆连接在电气化铁路的供电电网上,分为柔性和刚性两类,电力机车或动车组通过架式集电弓连接接触网,从其中取电。

架空电缆和高架电缆是香港和台湾的说法,在中国大陆通常被称为接触网供电。在中国大陆,架空电缆和高架电缆一般是指高压输电线路。

两种导线类型

最终都通过列车正常的运行轨道接地形成回路。也有少数铁路使用第四轨(例如伦敦地铁)作为电流回路。

高架电缆有个好处,就是同时能当高压输电道,如日本京急线。

电气化铁路-供电

电力牵引供电系统示意图直流供电

早期的电气化铁路采用电压相对低的直流供电。机车或动车组的电动机直接连接在电网主线上,通过并联或串联在电动机上的电阻和继电器来进行控制。

通常有轨电车和地铁的电压是600伏和750伏,铁路使用1500伏和3000伏。过去车辆使用旋转变流器来将交流电转换为直流电。现在一般使用半导体整流器完成这个工作。

采用直流供电的系统比较简单,但是它需要较粗的导线,车站之间距离也较短,并且直流线路有显著的电阻损失。

电气化铁路(电气化铁路分布)

荷兰、日本、澳大利亚、印尼、马来西亚的一些地区、法国的少数地区使用1500V的直流电,其中,荷兰实际使用的电压大约有1600V到1700V。

比利时、意大利、波兰、捷克北部、斯洛伐克、前南斯拉夫、前苏联使用3000V直流电。


电气化铁路低频交流电

一些欧洲国家使用低频交流电来给电力机车供电。德国、奥地利、瑞士、挪威和瑞典使用15千伏16.67赫兹(电网频率50Hz的三分之一)的交流电。美国使用11千伏或12.5千伏25赫兹的交流电。机车的电机通过可调变压器来控制。

工频交流电

匈牙利曾经在二十世纪三十年代在电气化铁路上使用50赫兹的交流电。然而直到五十年代以后才被广泛使用。

目前,一些电气化机车使用变压器和整流器来提供低压脉动直流电给电动机使用,通过调节变压器来控制电动机速度。另一些则使用可控硅或场效应管来产生突变交流或变频交流电来供应给机车的交流电机。

这样的供电形式比较经济,但是也存在缺点:外部电力系统的相位负荷不等,而且还会产生显著的电磁干扰。

中国、法国、英国、芬兰、丹麦、前苏联、前南斯拉夫、西班牙(标准轨高铁路段)、日本(东北、上越、北海道新干线及北陆新干线轻井泽以东)、使用单相25千伏50赫兹电力供应,台湾高速铁路、台湾铁路管理局、韩国、日本(东海道、山阳、九州新干线及北陆新干线轻井泽以西)使用单相25千伏60赫兹电力供应,而美国通常使用单相12.5千伏和25千伏60赫兹的交流电。另外日本东北、北海道地区使用20千伏50赫兹交流电,北陆地区、九州地区使用20千伏60赫兹交流电。


电气化铁路多种系统供电

因为有这么多的供电方式,有时候甚至一个国家内采用不同的方式(如日本关东以南是60Hz,但东北及北陆以北是50Hz),所以列车经常必须从一种供电方式转向为另一种供电方式。其中一种方法是在换乘站更换机车,当然,这样很不方便。

另一种方法是使用支持多种供电系统的机车。在欧洲,通常是支持四种供电系统(直流1.5千伏、直流3千伏、交流15千伏16.67赫兹、交流25千伏50赫兹)的机车,这样,它在从一个供电系统到另一个的时候就可以不用停留。

而日本国铁在上世纪60年代初已有交直流对应的列车机车、但当时只能对应其中50/60一个赫兹,俗称“单交直流型 ”。直至60年代尾才成功研发可在全日本电化区间的行走用的多种供电系统(直流1.5千伏、交流25千伏50/60赫兹),俗称“双交直流型”,并开始引进当时量产中的列车机车系列上,但在1987年由JR分社经营后,由于预期旅客电车不需再作全国性的调动或行走,加上双交直流型电车成本较高,故除了至国铁末年仍量产中的415系1500番台及之后的JR东日本的E653系及是双交直流型电车外,单交直流型的旅客电车从新被各JR旅客会社采用。

电气化铁路(电气化铁路分布)

电气化铁路-中国

中国第一条电气化铁路自1961年8月15日建成中国第一条电气化铁路—宝凤段,中国的电气化铁路建设有了迅速的发展, 从最初全面学习苏联,到改革开放后积极引进和自主开发创新,已经基本上形成了自己的技术模式,设计手段、施工工艺及器材生产也有了很大提高,达到了一定的水平。到2001年底, 中国已建成了38条电气化铁路干(支)线,电气化铁路总里程达17422.6km,已超过日本、印度,跃居亚洲第一位、世界第四位。1949年新中国成立时,中国电气化铁路还是个空白, 现在,中国已经成为世界电气化铁路大国。

第一条电气化铁路的诞生

新中国成立后,经过3年的努力,中国国民经济得到了全面恢复和初步发展,并从1953年起开始了有计划的经济建设。为了开发祖国内地资源,加强西南经济建设和国防建设,国家决定打开通往西南的屏障,修建宝成铁路。这段电气化铁路的供电制式最初是按3000V直流制设计的。于1957年4月决定改用25kV工频单相交流制。1958年3月完成初步设计,同年6月15日开始动工兴建,经过建设者们两年的艰苦创业,奋力拼搏,中国第一条电气化铁路于1960年5月14日胜利建成,经过一年多的试运行,于1961年8月15日正式交付运营,从此揭开了中国电气化铁路建设的序幕。


电气化铁路恢复时期的电气化铁路建设

到了20世纪60年代中期,为了加速大西南的建设,沟通西南地区与全国的物资交流,宝成铁路凤州至成都段的电气化工程又重新上马。1966年3月提出电气化研究报告,同年12月完成初步设计,1968年12月广元至马角坝段电气化工程开工。电气化工程是分段进行的,先修建广元至绵阳段,后修建广元至凤州段,最后修建绵阳至成都段。经过建设者们7年的艰苦奋战,于1975年7月1日,676km长的宝成电气化铁路全线建成通车。它的建成在我国铁路建设史上产生了重大影响。在这期间还完成了宝鸡至秦岭间的三机牵引改造工程。

1973年9月阳安线,1975年9月襄渝线襄樊至安康段,1978年3月石太线石家庄至阳泉段,1979年10月宝兰线宝鸡至天水段也相继动工修建。建设速度逐年加快,建设规模也逐年扩大。从20世纪70年代后期开始同时在几条线上进行施工,由单线电气化向复线电气化发展。到1980年底,共建成电气化铁路1679.6km。

改革开放以后的电气化铁路建设

十一届三中全会确定了以经济建设为中心的基本路线。随着中国改革开放的不断向前推进,中国的电气化铁路建设有了突飞猛进的发展。以前平均每年修建不到100km,这时平均每年修建已超过500km。1985年一年内就有京秦线、成渝线内(江)重(庆)段、贵昆 线贵(阳南)水(城西)段和太焦线长(治北)月(山)段4条电气化铁路共计1169.23 km建成交付运营,建设速度之快,是前所未有的。

中国的电气化铁路建设,在建设速度上和技术水平上又有了新的发展。20世纪90年代是中国社会主义现代化建设的关键时期,也是我国铁路由滞后型向基本适应型转变的重要时期。修建中国第一条时速200km的准高速铁路——广深电气化铁路。

2001年是新世纪第一年,也是中国实施国民经济和社会发展第十个五年计划的第一年。在这一年内将建成开通西康线、京广线武广段、哈大线、朔黄线神池南至肃宁北段、盘西线,共计2652.4km ,加上株六复线娄底至怀化段长达2808.6km。在这一年内还将动工修建内昆线宜宾至梅花山段和时速200km的秦沈客运专线电气化铁路;改造既有电气化铁路京秦线和继续筹建中国第一条时速250~300km的京沪高速电气化铁路。

2010年中国电气化铁路建设展望

从2001年起,中国开始实施第十个五年计划。在“十五”期间,中国铁路的发展重点是,加强路网主通道建设,加快西部铁路发展,继续实施提速战略,适当建设高速铁路,利用新技 术改造传统产业。改造传统产业主要是加强对既有线改造力度,加快铁路电气化改造进程,适应国家能源结构调整需要。铁路电气化建设与以往不同的是注重联网效益,要成网、成片考虑,以较大幅度提高运输能力。在“十五”期间,除完成“九五”期间已经开工的几条线外,还将修建宝兰二线、广深四线、津沈线、京沪线、沪杭线、浙赣线、郑徐线、胶济线、新月线、洛襄线、石怀线、武张线、沟海线等既有线电气化铁路和宁西线、渝怀线等新线电气化铁路,建设里程达9000多km,建设任务是十分繁重的。预计到2005年,中国电气化铁路总里程将达到20000km;到2010年将达到26000km。

电气化铁路-发展

高速电气化铁路(high speed electric railway) 行车速度在200km/h~350 km/h的电气化铁路。国际上一般将铁路行车速度在100km/h及以下者称为常速,在200 km/h以下称为快速或准高速,在200 km/h以上至350 km/h者称为高速。自20世纪50年代末始,一些科技发达国家就开始研究和建设高速电气化铁路,至1997年年底,全世界新建高速铁路约4 400 km,其中日本新干线1952km,法国TGV 1282km,德国ICE 427km,意大利ETR 237km,西班牙AVE 471km。20世纪末一些科技水平较高的国家正在研究一种新型磁悬浮列车,其运行速度可达4帅400km/h~500km/h。中国也开展了这方面的专题研究工作。

电气化铁路-意义

电力机车动车本身不带原动机和燃料,比功率(单位重量功率)大,与内燃机车和内燃动车相比,在相同或相近的持续牵引力(以单轴计)下持续速度高一倍以上,牵引相同重量的列车可以实现更高的额定最高速度(或称最高运营速度),而且恒功速度范围宽,电制动功率也大,所以起、制动和加、减速性能也均较优越。电力牵引这种快跑、多拉的特性能更充分地满足铁路运输对提高行车速度、增加列车重量和加大行车密度的综合要求,从而更加有利于:大幅度提高旅客运输的旅行速度和高附加值商品运输的送达速度;组织煤炭、建材、粮食等大宗货物的高效、快捷的重载直达运输;发挥速度优势,不断推出运输新产品,拓广铁路运输的营销范围,增强其在运输市场上的竞争实力。特别轨道交通与高速公路、航空运输协调发展的“运输走廊”,吸引大中城市间和市郊运输的大量客流转乘高速和快速电气列车,可以明显改善人们的旅行条件、缓解交通堵塞、减少大气污染、节省石油及土地等有限资源。这种超越上述企业效益的重大国民经济效益和社会效益,在唤醒发达国家的政府和社会对铁路公益性的再认识,为铁路发展获取资金和支持方面,起了重要的作用。

电气化铁路虽然一次投资较大,但是电气化后完成的运量大,运输收入多,运输成本低,所需投资能在短期内得到偿还清(视运量大小,一般为5年~10年,有的只需2年~3年)。运输成本的降低,主要是电力机车动车直接利用外部电源、构造简单、摩擦件少、购置费低、使用寿命长,因而包括能源费、维修费、折旧费的机务成本低;机车车辆周转快,设备利用率高;客运电力机车动轴少、轴重轻,由提速而增加的工务成本也较少;空调客车、冷藏车日起触网供电,较加挂发电车节省费用和运力。


关键词:电气化铁路分布